169 research outputs found

    Stability of the human spine: a biomechanical study

    Get PDF
    The influences of curvatures and of physical properties on the mechanical stability of the spine were analysed by means of a three-dimensional, geometrical, nonlinear biomechanical model. According to the model, the initial buckling load decreases with increasing lordotic and kyphotic curvatures. When the body weight is taken into account as a load distributed along the whole spine, the calculated initial buckling load is twice the value that it is in the case of a single concentrated load acting at the top of the spine. Applying the large deflection theory, no relation is found between the increased slenderness of a spine and a ‘buckled’ configuration of a scoliotic spine

    Effects of material properties of femoral hip components on bone remodeling

    Get PDF
    Bone loss around femoral hip stems is one of the problems threatening the long-term fixation of uncemented stems. Many believe that this phenomenon is caused by reduced stresses in the bone (stress shielding). In the present study the mechanical consequences of different femoral stem materials were investigated using adaptive bone remodeling theory in combination with the finite element method. Bone-remodeling in the femur around the implant and interface stresses between bone and implant were investigated for fully bonded femoral stems. Cemented stems (cobalt-chrome or titanium alloy) caused less bone resorption and lower interface stresses than uncemented stems made from the same materials. The range of the bone resorption predicted in the simulation models was from 23% in the proximal medial cortex surrounding the cemented titanium alloy stem to 76% in the proximal medial cortex around the uncemented cobalt-chrome stem. Very little bone resorption was predicted around a flexible, uncemented iso-elastic stem, but the proximal interface stresses increased drastically relative to the stiffer uncemented stems composed of cobalt-chrome or titanium alloy. However, the proximal interface stress peak was reduced and shifted during the adaptive remodeling process. The latter was found particularly in the stiffer uncemented cobalt-chrome-molybdenum implant and less for the flexible isoelastic implant

    In vitro compression of a soft tissue layer on a rigid foundation

    Get PDF
    In vitro compression studies have been performed on layers of porcine skin and fat. The tissue layers have been loaded by means of various indentors. Indentor displacements and interstitial fluid pressures have been measured. The results have been compared to finite element calculations with mixture elements. A qualitative agreement between calculations and measurements is found. The results support the hypothesis that skin and fat behave like solid/fluid mixtures

    The cause of axial rotation of the scoliotic spine

    Get PDF
    To explain the cause of axial rotation in a scoliotic vertebral column, the influence of the gravitation force on a spine with a C-scoliosis has been investigated by means of a mechanical model. In this model the gravitation force takes hold of the three-dimensionally curved vertebral column eccentrically. From these reflections it appears that the axial rotation in the scoliotic spine can be explained by the moment distribution caused by this eccentrical gravitation force. The moment distribution, necessary for correction of the spine, is supposed to be opposite to the moments caused by the gravitation force. The moment distribution caused by the Harrington and the Luque spinal correction systems are compared to the calculated optimum correction moments. It appears that the moment distribution for the Harrington and Luque methods, necessary for the correction of the lateral deviation, are almost the same as the calculated correction moments. But the axial rotation appears to be increasing instead of decreasing in both correction systems

    Relative motion at the bone-prosthesis interface

    Get PDF
    Bone ingrowth in porous surfaces of human joint implants is a desired condition for long-term fixation in patients who are physically active (such as in sport or work). It is generally recognized that little actual bone ingrowth occurs. The best clinical results report between 10 and 20% of the total prosthetic surface in contact with bone will feature good bone ingrowth. One inhibiting factor is the relative motion of the bone with respect to the implant during load-bearing. This study investigated mathematically the interface micromotion (transverse reversible relative motion) between a flat metal tibial prosthetic surface of a prototype implant, and the bone at the resection site. The aim was to assess the effect of perimeter fixation versus midcondylar pin fixation and the effect of plate thickness and plate stiffness.\ud \ud Results showed that in the prototype design the largest reversible relative bone motion occurred at the tibial eminence. By design, the skirt fixation at the perimeter would prevent bone motion. A PCA (Howmedica Inc.) prosthesis has been widely used clinically and was chosen for a control because its fixation by two pegs beneath the condyles is a common variation on the general design of a relatively thick and stiff metal tibial support tray with pegs in each condylar area. The PCA tibial prosthesis showed the largest bone motion at the perimeter along the midcondylar mediolateral line, while being zero at the pegs. Maximum relative bone motion for the prototype was 37 ¿m and for the control was 101 ¿m. Averaged values showed the prototype to have 38% of the relative reversible bone motion of the control (PCA)

    Is High-frequency stiffness a measure for the number of attached cross-bridges?

    Get PDF
    Muscle stiffness is an important property for movement control. Stiffness is a measure for the resistance against mechanical disturbances in muscular-skeletal systems. In general muscle stiffness is assumed to depend on the number of attached cross-bridges. It is not possible to measure this number in vivo or vitro. In experiments, high frequency perturbations are used to obtain a measurement of stiffness. In this paper a simulation study is presented concerning the correlation between the number of attached cross-bridges and high-frequency stiffness. A model based on the sliding-filament theory was used for the simulation of dynamic contractions. It is concluded that these two methods of muscle stiffness determination do not yield compatible results during lengthenin

    Adaptive bone-remodeling theory applied to prosthetic-design analysis

    Get PDF
    The subject of this article is the development and application of computer-simulation methods to predict stress-related adaptive bone remodeling, in accordance with ‘Wolff's Law’. These models are based on the Finite Element Method (FEM) in combination with numerical formulations of adaptive bone-remodeling theories.\ud \ud In the adaptive remodeling models presented, the Strain Energy Density (SED) is used as a feed-back control variable to determine shape or bone density adaptations to alternative functional requirements, whereby homeostatic SED distribution is assumed as the remodeling objective.\ud \ud These models are applied to investigate the relation between ‘stress shielding’ and bone resorption in the femoral cortex around intramedullary prostheses, such as used in Total Hip Arthroplasty (THA). It is shown that the amount of bone resorption depends mainly on the rigidity and the bonding characteristics of the implant. Homeostatic SED can be obtained when the resorption process occurs at the periosteal surface, rather than inside the cortex, provided that the stem is adequately flexible
    corecore